Valerio Taverniti, PhD July 3rd, 2024

Capsid assembly modulators against HBV: old molecules with new

mechanisms of action

Inserm, U1110 – Institute for Translational Medicine and Liver Disease (ITM), Strasbourg

Disclosures

- T.F.B. and E.R.V. received funding from Aligos Belgium BV as part of the VLAIO project CoHeBA (HBC.2020.2454) with V.T.'s fellowship funded by the grant.
- Y.D. and D.B.K. are employees of Aligos Belgium BV.

Endorsed by

HBV core protein is central in HBV life cycle

- Around 300 million people chronically infected by HBV
- NUCs and pegINF are the only available therapies
- Needs for new therapies to reach a functional cure
- HBV Core protein is a good target

HBV core protein is central in HBV life cycle

- Around 300 million people chronically infected by HBV
- NUCs and pegINF are the only available therapies
- Needs for new therapies to reach a functional cure
- HBV Core protein is a good target

CAM-A RG7907 treatment decreases levels of HBsAg in AAV-HBV mice

✓ Liver damage suggests a CAM-A induced cell death of HBV-infected hepatocytes

CAM-A RG7907 treatment activates apoptosis in AAV-HBV mice

CAM-A treatment activates apoptosis and the innate immunity in AAV-HBV mice

Main objectives

1. Elucidating the fate of HBV-infected hepatocytes that accumulates core nuclear aggregates after CAM-A treatment

2. Deciphering the response of HBV-infected hepatocytes to the cytoplasmic accumulation of HBV genetic material

INSERM UMR_S1110 University of Strasbourg

CAM-A RG7907 treatment increases cellular toxicity in HBV-infected dHepaRG cells

CAM-A RG7907 treatment increases cellular toxicity in HBV-infected dHepaRG cells

120-

100-

80·

60-

40·

20·

0

HBV positive cells (% of Mock)

CAM-A RG7907 treatment increases cellular toxicity in HBV-infected dHepaRG cells

120

100-

80·

60-

40·

20·

CAMAR REGIOUT

HBV positive cells (% of Mock)

CAM-A dependent core aggregation induces apoptosis in HepG2-NTCP cells expressing core

CAM-A dependent core aggregation induces apoptosis in HepG2-NTCP cells expressing core

✓ CAM-A treatment causes cell death of cells expressing core WT but not the T33N mutant.

CAM-A dependent core aggregation induces apoptosis in HepG2-NTCP cells expressing core

✓ CAM-A treatment causes cell death of cells expressing core WT but not the T33N mutant.

✓ CAM-A treatment induces apoptosis in cells expressing core WT.

CAM-A treatment causes the nuclear accumulation of core aggregates

HA:core: anti-HA Nuclei: DAPI

✓ CAM-A treatment causes the nuclear accumulation of core aggregates only in cells expressing core WT

CAM-A dependent core aggregation induces apoptosis in primary human hepatocytes (PHH)

✓ CAM-A treatment induces apoptosis in PHH expressing core WT

CAM-A dependent core aggregation induces apoptosis in HepAD38 replicating HBV

CAM-A dependent core aggregation induces apoptosis in HepAD38 replicating HBV

CAM-A dependent core aggregation induces apoptosis in HepAD38 replicating HBV

CAM-A dependent core aggregation induces the deregulation of host genes

CAM-A dependent core aggregation induces the deregulation of host genes

✓ ANXA1 is a good candidate driver of apoptosis

✓ ANXA1 upregulated in cells expressing core WT after CAM-A and HepAD38 replicating HBV

ANXA1 drives apoptosis activation induced by CAM-A treatment

ANXA1 drives apoptosis activation induced by CAM-A treatment

✓ ANXA1 knockdown reduces cell death and apoptosis activation after CAM-A treatment

Conclusions

✓ CAM-A dependent core aggregation causes cell death via activation of apoptosis

✓ ANXA1 is a driver of apoptosis

✓ The clinical impact needs to be determined – high levels of core are required

Taverniti et al. 2024 Berke et al. 2024 Kornyeyev et al. 2024

Conclusions

✓ CAM-A dependent core aggregation causes cell death via activation of apoptosis

✓ ANXA1 is a driver of apoptosis

✓ The clinical impact needs to be determined – high levels of core are required

Taverniti et al. 2024 Berke et al. 2024 Kornyeyev et al. 2024

Acknowledgements

Inserm Unit 1110

Eloi R. Verrier

Claudie Eber

Université de Strasbourg Excellence University

Les Hôpitaux Universitaires de STRASBOURG

Christos Satratzemis Emma Gerges Laura Heydmann Charlotte Bach Fabio Giannone Patrick Pessaux Emilie Crouchet Sarah Durand Marine Oudot Cloe Gadenne Joachim Lupberger Catherine Schuster **Thomas F. Baumert**

ALIGOS Therapeutics

Yannick Debing Hannah Vanrusselt Dieudonne B. Kum

