Capsid assembly modulators as backbone treatments for HBV functional cure

Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology (LOBP), Emory University School of Medicine & Children's Healthcare of Atlanta, GA, 30322, USA

Disclosures (equity) : Aligos, Cocrystal, Gilead, BMS, MDGL, Merck, Lilly, Roche, AbbVie, Pfizer, GSK, Vertex, Novo

Endorsed by

CAPSID ASSEMBLY MODULATORS AS BACKBONE TREATMENTS FOR HBV FUNCTIONAL CURE

Raymond F. Schinazi, PhD, Hon DSc, FAASLD

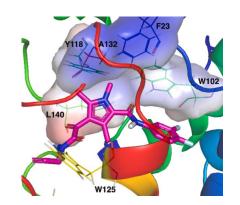
Lyon: Wednesday July 3, 2024

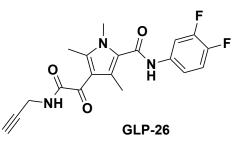
Center for ViroScience and Cure, Department of Pediatrics, Laboratory of biochemical pharmacology (LOBP), Emory University School of Medicine & Children's Healthcare of Atlanta, GA, 30322, USA Email: rschina@emory.edu

HEPATITIS B VIRUS

- ~1.5 million people become newly infected each year.
- ~ 300 million people are chronically infected.
- Only 10% of infected individuals are diagnosed.
- ~ 820,000 people die each year from hepatitis B and related complications (i.e.: liver cancer).
- The absence of symptoms for most infected or chronically infected patients leads to spread of the virus to others.
- Vaccines are available, but coverage among adults has been suboptimal.
- Existing drug therapies can suppress chronic hepatitis B infection but cannot cure HBV and *do not prevent HCC*.

HEPATITIS B VIRUS TREATMENT DUAL ROLE OF CAMS

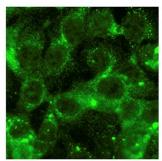


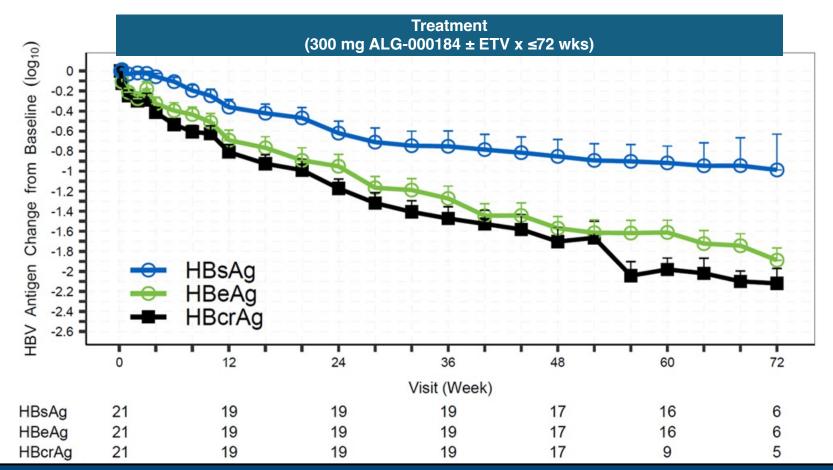

- Two mechanisms of action (MoA) can be demonstrated preclinically
 - Primary mechanism
 - Promotes the premature assembly of core protein, leading to the formation of empty capsids
 - Responsible for the deep reductions of HBV DNA and RNA observed clinically with CAMs
 - Secondary mechanism
 - > Requires ~10-fold higher drug concentrations
 - Prevents the establishment / replenishment of cccDNA, which produces HBcrAg, HBeAg, and (some of) HBsAg
- 1st generation CAMs in development
 - Demonstrated DNA, RNA reductions (1st MoA)
 - No clear evidence of effects on cccDNA (2nd MoA)
- Viral Secretio Viral Entry Capsid Assembly CAM mRNA (Primary Endoplasmic Reticulum pgRNA Host Enzyme Viral Capsid Transcription Disassembly CAM cccDNA Secondary rcDNA **Host Polymerase** Nucleus Integrated HBV DNA **Infected Hepatocyte**
- Observing both mechanisms clinically requires potent compounds with excellent PK properties

EARLY CAM DISCOVERY: GLP-26

- ✓ Proprietary class II CAM
- ✓ Inhibits HBV DNA replication and HBeAg secretion/cccDNA amplification at lownanomolar concentrations (EC_{50/90} = 3 and 14 nM). No apparent cytotoxicity
- Long stability (> 24 h) in dog and human plasma
- Good human liver microsomal stability
- ✓ Excellent oral bioavailability in mice
- ✓ Synergistic antiviral activity in culture with Entecavir (ETV)
- \checkmark In chimeric humanized liver mice:
 - ✓ no toxicity up to 30 mg/kg orally for 10 weeks
 - ✓ 4-log drop in HBV DNA
 - ✓ Decrease in HBsAg and HBeAg post treatment
- In an HBV nude mouse model bearing HBV transfected AD38 xenografts: 2.3-3 log drop in HBV DNA. Decrease in HBsAg was observed.
- ✓ Favorable PK profile in cynomolgus monkeys

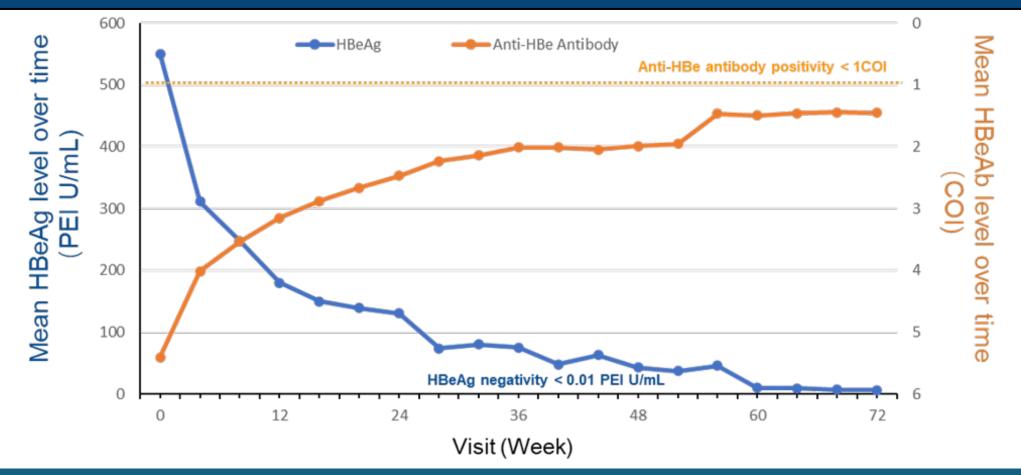
Amblard F, et al. *Antimicrob Agents Chemother*. 2020;64(2):e01701-19. Hurwitz SJ, et al. *Viruses*. 2021;13(1):114. Amblard F, et al. *Bioorg Chem*. 2023 Dec;141:106923.





ALG-000184: A UNIQUE POWERFUL HBV CAM

- Design based on GLP-26 sub-nM inhibition in culture
- Oral dosing with 300 mg ALG-000184 \pm ETV x \leq 72 weeks in untreated HBeAg+ CHB subjects results in:
 - A favorable safety profile
 - ALG-000184 \pm ETV shows greater suppression of HBV DNA/RNA vs. ETV alone (1st MoA)
 - No viral breakthrough when ALG-000184 is given as monotherapy $x \le 72$ weeks
 - Multi-log reductions in HBsAg, HBeAg and HBcrAg, which may be mediated by ALG-000184 (2nd MoA)
- ALG-000184 may play an important role in enhancing rates of chronic suppression (superior/non-inferior to NAs) and functional cure
- Dosing is ongoing ≤96 week cohorts
- Phase 2 enabling activities planned for 1Q25

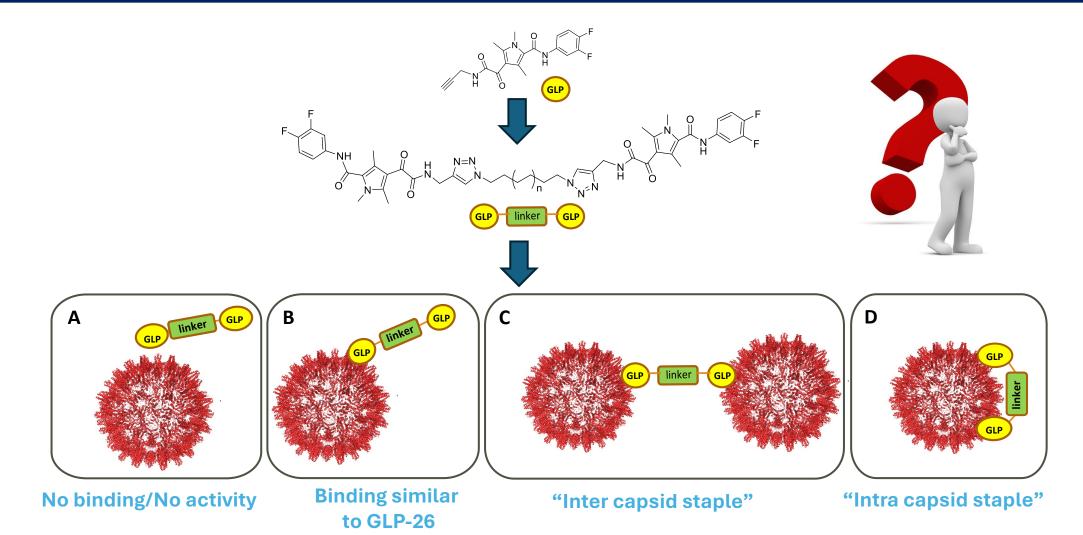

EASL 2024: ALG-000184-201 HBsAg, HBeAg and HBcrAg declines in HBeAg⁺ CHB subjects

Graph plots subjects initially randomized to: ALG-000184 + ETV and were compliant (confirmed by PK). Yuen, M-F. et al., Late Breaker Poster #5028-C, AASLD (2023). HBcrAg = HBV core Ag

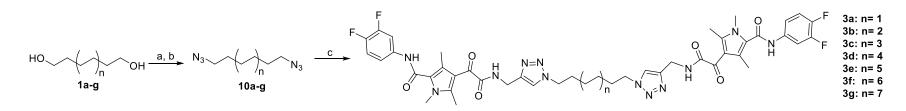
Continued substantial HBsAg, HBeAg, and HBcrAg reductions noted with combo through W72 Max declines: 2.1, 2.6 and 2.7 log₁₀ IU/mL, respectively

300 mg ALG-000184 <u>+</u> ETV vs. ETV (New) MEAN HBEAG AND ANTI-HBE ANTIBODY LEVEL OVER TIME

Anti-HBe antibody (HBeAb) level showed positive trend with decline of HBeAg



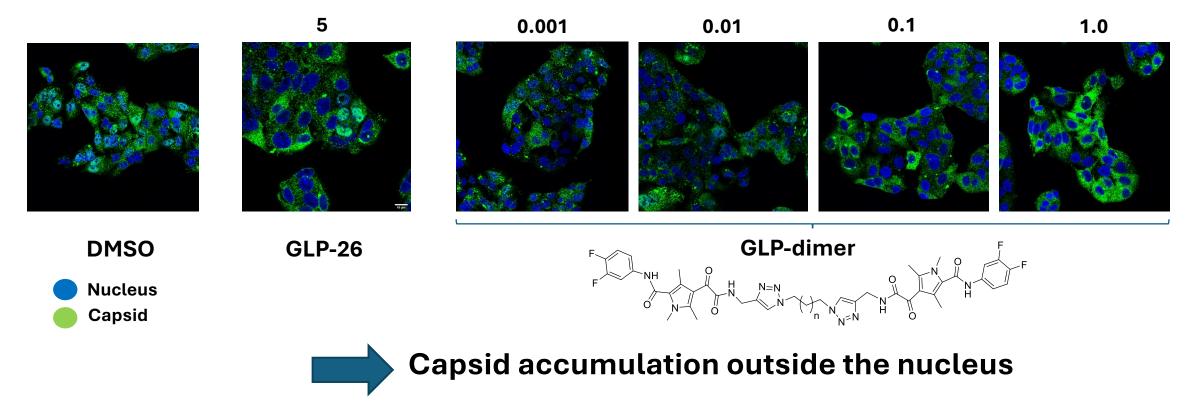
Toward the next generation of HBV CAMs?


GLP-26 DIMERS: HYPOTHESIS COOPERATIVITY OR MULTIVALENT BINDING

GLP26 dimers: Synthesis & anti-HBv activity

Synthesis. Reagents and conditions: (a) TSCl, Et₃N, CHCl₃, 8 h; (b) NaN₃, DMF, 90 °C-100 °C, overnight, 50%-70% over 2 steps. (c) GLP-26, CuSO₄.5H₂O, Na ascorbate, CH₃CN/H₂O, 100 °C, 8 h, 40-60%.

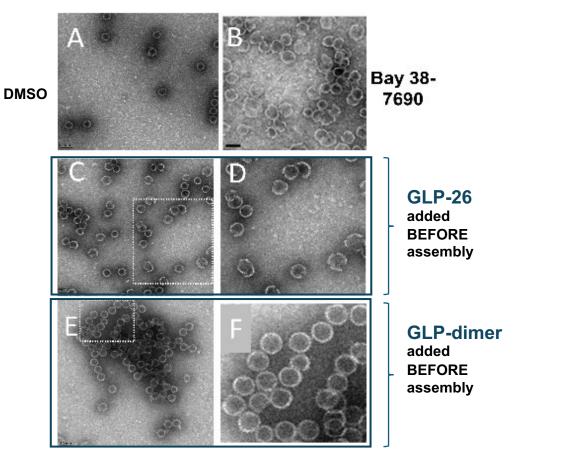
- Clear correlation between the length of the linker and the anti-HBV activity (bell curve)
- Dimers 3d and 3e (C₁₂ and C₁₄ linkers) were 10-80 times more potent than reference compound GLP-26
- Two "warheads" were essential for potent activity


Compound _	Anti-HBV activity In HepAD38 (nM)		Cytotoxicity CC ₅₀ (µM)			
	EC ₅₀	EC ₉₀	PBM	CEM	Vero	HepG2
3 a	285 ± 21.2	>10,000	>100	ND	ND	>100
3b	438 ± 211	$5,520 \pm 1,520$	26.4	>100	>100	>100
3c	4.0 ± 1.0	140 ± 110	>100	N/A	N/A	>100
3d	$\textbf{0.1} \pm \textbf{0.4}$	8 ± 1	63.4 ± 40.6	$\textbf{42.8} \pm \textbf{0.6}$	>100	>100
3 e	0.1 ± 0.5	9 ± 0.2	>100	ND	ND	>100
3 f	18 ± 11	130 ± 60	>100	ND	ND	>100
3g	25 ± 24	380 ± 10	>100	ND	ND	>100
GLP-26	8 ± 1.0	70 ± 20	>100	>100	25.0	>100

GLP-26 DIMERS: EFFECT ON CAPSIDS LOCATION (HEPAD-38)

Fluorescence microscopy

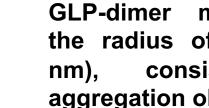
Concentration (µM)


GLP-26 DIMERS: EFFECT ON CAPSIDS MORPHOLOGY <u>BEFORE</u> ASSEMBLY

Differences between GLP-26 and GLP-dimer:

- Formation of aggregates

- No presence of aberrant structures


GLP-26 DIMERS: EFFECT ON CAPSIDS MORPHOLOGY AFTER ASSEMBLY

DLS Experiments	HBV Capsid + DMSO		HBV Capsid + 20 μΜ (GLP-26) ₂
Radius (nm)	20.7 ± 1.2	28.4 ± 0.8	214 ± 12
% PD	28.5 ± 5.8	26.6 ± 5.9	Multimodal

Dynamic light scattering (DLS) experiments for HBV capsid/GLP-26 complexes. % PD = % Polydispersity.

Incubation of 10 µM assembled HBV capsids with 1% DMSO control, 20 µM GLP-26, or 20 µM GLP-dimer for 30 mins

GLP-dimer markedly increased the radius of HBV cores (>200 consistent with the aggregation observed by EM

CONCLUSIONS: CAMS AND GLP-26 DIMERS

Certain CAMs have sub-nM potency and high safety profiles in vitro and in humans.

Prevent the establishment / replenishment of cccDNA, which produces HBcrAg, HBeAg, and (some of) HBsAg

Super rapid declines of HBV DNA (> 6 logs) in humans as low as 10 mg/kg (po)

Significant reductions (> 2 logs) in HBs, HBe and HBcrAg. No seroconversion yet after 72 weeks

Effective in reducing or eliminating HBeAg - producing anti-HBeAg in humans (1st indication?)

GLP-26 dimers appear to have a different mechanism compared to certain monomers. Based on novel MoI, we can presume this is a new class of CAMs – named D-CAMs

Merci - Thank you – Happy 4th of July

